Manifestation of a Second Dirac Surface State and Bulk Bands in THz Radiation from Topological Insulators

نویسندگان

  • Chien-Ming Tu
  • Tien-Tien Yeh
  • Wen-Yen Tzeng
  • Yi-Ru Chen
  • Hsueh-Ju Chen
  • Shin-An Ku
  • Chih-Wei Luo
  • Jiunn-Yuan Lin
  • Kaung-Hsiung Wu
  • Jenh-Yih Juang
  • Takayoshi Kobayashi
  • Cheng-Maw Cheng
  • Ku-Ding Tsuei
  • Helmuth Berger
  • Raman Sankar
  • Fang-Cheng Chou
چکیده

Topological insulators (TIs) are interesting quantum matters that have a narrow bandgap for bulk and a Dirac-cone-like conducting surface state (SS). The recent discovered second Dirac surface state (SS) and bulk bands (BBs) located ~1.5 eV above the first SS are important for optical coupling in TIs. Here, we report on the time-domain measurements of THz radiation generated from TIs n-type Cu(0.02)Bi2Se3 and p-type Bi2Te3 single crystals by ultrafast optical pulse excitation. The observed polarity-reversal of the THz pulse originated from transient current is unusual, and cannot be reconciled with the photo-Dember effect. The second SS and BBs are found to be indispensable for the explanation of the unusual phenomenon. Thanks to the existence of the second SS and BBs, TIs manifest an effective wide band gap in THz generation. The present study demonstrates that time-domain THz spectroscopy provide rich information of the optical coupling and the electronic structure of TIs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional topological photonic crystal with a single surface Dirac cone

A single Dirac cone on the surface is the hallmark of three-dimensional (3D) topological insulators, where the double degeneracy at the Dirac point is protected by time-reversal symmetry and the spin-splitting away from the point is provided by the spin-orbital coupling. Here we predict a single Dirac-cone surface state in a 3D photonic crystal, where the degeneracy at the Dirac point is protec...

متن کامل

Terahertz conductivity of topological surface states in Bi1.5Sb0.5Te1.8Se1.2

Topological insulators are electronic materials with an insulating bulk and conducting surface. However, due to free carriers in the bulk, the properties of the metallic surface are difficult to detect and characterize in most topological insulator materials. Recently, a new topological insulator Bi₁.₅Sb₀.₅Te₁.₇Se₁.₃ (BSTS) was found, showing high bulk resistivities of 1-10 Ω.cm and greater con...

متن کامل

Effect of Surface States on Terahertz Emission from the Bi2Se3 Surface

Three-dimensional topological insulators are materials that behave as an insulator in the interior, but as a metal on the surface with Dirac surface states protected by the topological properties of the bulk wavefunctions. The newly discovered second surface state, located about 1.5 eV above the conduction band in Bi2Se3 allows direct photoexcitation of the surface electrons in n-doped samples ...

متن کامل

Evidence of Topological Surface State in Three-Dimensional Dirac Semimetal Cd3As2

The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions. In addition to the gapless points in the bulk, the three-dimensional Weyl/Dirac semimetals ...

متن کامل

Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn

Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015